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It is commonly assumed that heat flux and temperature diffusivity coefficients obtained 
in steady-state measurements can be used in the derivation of the heat conduction 
equation for fluid flows. Meanwhile it is also known that the steady-state heat flux as 
a function of temperature gradient in stably stratified turbulent shear flow is not 
monotone: at small values of temperature gradient the flux is increasing, whereas it is 
decreasing after a certain critical value of the temperature gradient. Therefore the 
problem of heat conduction for large values of temperature gradient becomes 
mathematically ill-posed, so that its solution (if it exists) is unstable. 

In the present paper it is shown that a well-posed mathematical model is obtained 
if the finiteness of the adjustment time of the turbulence field to the variations of 
temperature gradient is taken into account. An evolution-type equation is obtained for 
the temperature distribution (a similar equation can be derived for the concentration 
if the stratification is due to salinity or suspended particles). The characteristic property 
which is obtained from a rigorous mathematical investigation is the formation of step- 
wise distributions of temperature and/or concentration from continuous initial 
distributions. 

1. Introduction 
The problem of turbulent heat and mass transfer in stably stratified shear flows has 

been considered for a long time as one of geophysical importance (Monin & Yaglom 
1971) and, more recently, as a problem of technical importance (Petukhov & Polyakov 
1989). Stable stratification (i.e. a density decrease in the vertical direction in the 
presence of a strong gravity field) suppresses turbulence, and therefore reduces the heat 
and mass exchange efficiency. A challenge for theoreticians remains the formation of 
step-wise temperature and density distributions in isolated water masses in the ocean, 
induced by stratification and turbulence. 

Phillips (1972) suggested that the formation of steps can be explained by the 
instability of the density field in strongly stably stratified turbulent shear flows. This 
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instability is due to the strong decrease of turbulent heat exchange coefficients with 
growing temperature gradients. Due to this strong decrease, the increment of heat flux 
due to the increasing temperature gradient is, at large values of the gradient, less than 
its decrease due to the corresponding suppression of turbulence, and consequently, of 
the heat exchange coefficient. Such non-monotone behaviour of the heat flux was 
observed long ago, and the papers by Rossby & Montgomery (1935), Munk & 
Anderson (1948), Mamayev (1958) and Felsenbaum & Boguslavsky (1977) should be 
mentioned in this context. 

Posmentier (1977) proposed, independently of Philips, a similar idea in connection 
with salinity flux. His paper, concerning the non-monotonic dependence of mass flux 
on the salinity gradient, is of particular interest because it contains the results of 
numerical calculations which show the formation of steps. The paper by Linden (1979) 
contains a comprehensive review and an extension of the stability considerations 
mentioned before. The more recent paper of Ruddick, McDougall & Turner (1989) 
contains a review of the basic contributions to the problem and also the results of 
laboratory experiments with stirred sugar and salt solutions demonstrating the 
formation of density steps. The compilation of Ivey & Imberger (1991) regarding the 
inhibition of flux due to stratification should also be mentioned. 

All these papers however had two important points in common which remained 
unclear. First of all, it was always assumed in the derivation of the equation for 
temperature and salinity that the local relation between heat and/or mass flux and the 
corresponding gradients which is valid for steady equilibrium conditions, can be 
substituted into the non-steady equation of energy or mass balance, exactly as we do 
usually in deriving, for instance, Fourier or Fick equations. A common argument is 
that the flux relaxation times are negligibly small, so the limiting case can be considered 
when the relaxation time vanishes. However, the equations obtained in this way 
reduce, for large values of the gradients, to diffusion or heat conduction equations with 
negative coefficients which lead to mathematically incorrect initial value problems - 
that was the second point which remained unclear: the possible ill-posedness of the 
evolution equations obtained. 

In the present paper it is shown that taking into account the finiteness of the 
adjustment time of the turbulence field (and, consequently, of the turbulent exchange 
coefficients) to the variations of the temperature and/or concentration field leads to a 
correct mathematical model of the phenomenon for large values of the gradients also. 
In particular the following evolution equation is obtained for temperature and/or 
concentration : 

0, = $(ez)z  + M @ z ) z t .  (1) 

Here O(z, t )  is the temperature distribution or concentration as a function of the vertical 
coordinate z and time t ,  #(8,) is the absolute value of the ‘temperature flux’ (heat flux 
divided by specific heat) as the function of temperature gradient, and subscripts denote 
partial derivatives, for example 

The small parameter T represents the positive relaxation (adjustment) time. The 
smooth function # ( p )  is non-monotone, satisfies the conditions 

$ ( O ) = O ;  $(+m)=O; $ ( p ) > O  for p > O ;  
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FIGURE 1. The functions 4, (a), and $, (b). 

and has its maximum at a certain value p = a. A typical choice of $ suggested by 
experimental data (see figure la) is 

The function $(p)  (see figure 1 b) is determined by the temperature flux (function $) in 
the following way: 

(2) f ( P )  = - $'(P) + - '(P) for p > 0. 
P 

The function $(p)  is smooth and strictly increasing; it satisfies the relations 

$(O) = 0, $(+co) = y < +a, 
In particular, from (2) follows the inequality 

$'(PI 2 -9+YP) for P > 0, (3) 
which will be of importance below and which implies that the last term of the equation 
is strong enough to control the possibly negative diffusion coefficient $'(@J. 

It is plausible that if 7 = 0, equation (1) leads to ill-posed initial-boundary-value 
problems since $ is not monotone. An indication in this direction is supplied by the ill- 
posedness of the backwards heat equation and also by a non-uniqueness result by 
Hollig (1983), who constructed infinitely many solutions of the equation 8, = $(8z)z 
which have the same initial function in the special case in which $ is piecewise linear, 
decreasing in an interval and increasing elsewhere. 

If T > 0, the evolution equation (1) is of degenerate pseudoparabolic type. Here the 
word degenerate indicates the fact that, due to relation (2), f ( p )  is not uniformly 
bound away from zero since @'(p) + 0 as p + co. 

Degenerate and non-degenerate pseudoparabolic equations arise in many appli- 
cations and they have been studied by many authors (for references to the literature 
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see Barenblatt et al. 1993). Of special interest for us is the work by Padron (1990) in 
which (1) (or rather its integrated version for the gradient zi = 8, : 0, .= gi (u),, + ~@(zi),,~) 

is studied in the non-degenerate case in which $(p)  = p .  The behaviour of the function 
q5 is the same as in our case. This work contains an existence theorem, a result which 
indicates the stability of delta-function-type solutions (which correspond to our step- 
wise solutions), and some numerical calculations. The mathematical techniques which 
are used are quite different from the ones in the present paper. In addition we shall see 
that, namely, the degeneracy of the function @ leads to the generation of the 
discontinuous solutions. 

After the derivation of the physical model in $2, we list in 53 the precise hypotheses 
on the data and we present and discuss our main mathematical results concerning the 
initial-boundary-value problem 

(4) I 4 = gi(O,), +T@(O,),, for 0 < z < L, t > 0, 

O,(O, t )  = 8,(L, t )  = 0 for t > 0, 

O(z, 0) = d,(z) for 0 < z < L, 

to which the problem under consideration was reduced. In particular we shall explain 
what we mean by a solution of this problem: this is non-trivial because the solution is 
a generalized one. The top and bottom boundaries in problem (4) correspond to no-flux 
conditions, but the mathematical analysis does not depend strongly on the choice of 
the boundary conditions; in particular a similar analysis is possible for the 
corresponding Cauchy problem in which - 00 < z < + co and no boundary conditions 
are imposed. Results remain practically the same. 

Our mathematical results presented below justify the well-posedness of problem (4), 
and give a rather complete qualitative picture of the transient and large-time behaviour 
of the solutions. This behaviour strongly depends on the properties of the function @ 
and, in particular, on the threshold value a for the temperature gradient. We shall show 
that if the initial temperature gradient O,(z,O) is smaller than a for all z ,  then the 
temperature gradient O,(z, t )  remains subcritical for all z and t (in this case the problem 
without third-order term is well-posed). On the other hand, if O,(z,O) is sufficiently 
large at some points or in an interval, then O(Z, t )  becomes discontinuous after some 
finite time t o ;  in addition, 8(z, t )  remains discontinuous for all later times t > to, and 
stabilizes (we shall explain exactly what this means) to a step-wise (i.e. piecewise 
constant) temperature distribution as t + + co. 

In the last section we shall present some numerical computations, which strongly 
suggest that if the temperature gradient is supercritical in some interval, then the 
asymptotic temperature distribution is discontinuous for sufficiently small values of 7, 
and the number of layers increases with decreasing T .  

2. Basic physical hypotheses and the model 
For simplicity we shall only consider the case of a thermally stratified fluid; the 

model for the case of salinity stratification or stratification by suspended particles can 
be obtained in a completely analogous way. 

The mean potential temperature 8(z, t )  in a statistically horizontally homogeneous 
layer satisfies the energy balance equation 

8, = (k@,)*. ( 5 )  
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P 
FIGURE 2. The steady heat diffusivity k,(p). 

Here z is the vertical coordinate, t is the time and k(z, t )  is the turbulent temperature 
diffusivity, defined by the relation 

where @(z, t )  is the turbulent heat flux, and p and c, are, respectively, the reference fluid 
density and fluid specific heat per unit mass under constant pressure, so that pc, is the 
specific heat per unit volume. We stress that under conditions of horizontal statistical 
homogeneity relation (6) does not contain any additional assumption; it is nothing 
other than the definition of turbulent temperature diffusivity. 

Under fixed external hydrodynamic conditions (e.g. applied pressure gradient or 
stress) and a fixed value of the temperature gradient, the turbulent temperature 
diffusivity tends to a certain limiting value. For fixed hydrodynamic conditions this 
limiting value should be a function of the temperature gradient only: 

k = k,(B,). (7) 
It is well known (see e.g. Monin & Yaglom 1981; Ivey & Imberger 1991) that positive 
temperature gradient inhibits the turbulence, and therefore the function k,(p) is 
decreasing : 

kh(p) < 0 for p 2 0 

(& possibly vanishes at p = 0 and definitely as p - f  00). 

At large values of p the function k,(p) decreases rapidly, so that the heat flux tends 
to zero for large temperature gradients Oz (we neglect the molecular temperature 
diffusivity even at large temperature gradients), i.e. defining the function q5 as the 
absolute value of ‘temperature flux’ 

q5(0,) = kdo,) 8 2 ,  (8) 

we obtain that the graph of $(p)  has the shape which we have indicated in figure 1 (a): 
$(p )  is increasing for 0 < p < a and decreasing for p > a. Qualitatively the graph of q5 
in figure 1 (a) has the same form as the one proposed by Rossby & Montgomery (1939, 
Munk & Anderson (1948), Posmentier (1977), Felsenbaum & Boguslavsky (1977), and 
Ruddick et al. (1989); a reasonable choice for k, based on experimental data is (see 
figure 2) 

We repeat that k,(B,) and q5(0,) correspond to limiting values which are obtained for 
large times under fixed external conditions, including temperature gradient. 

12 FLM 253 
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At first sight it seems natural to use the steady temperature diffusivity k ,  to close the 
energy balance equation (5). Indeed, the relaxation time of the turbulent field to a 
certain given value of the temperature gradient seems to be small in comparison with 
the characteristic time of the temperature field redistribution. This approach, similar 
to the traditional derivation of the heat conduction and diffusion equations, leads to 
the following equation for the potential temperature : 

Such an approach was used in particular by Posmentier (1977). If the temperature 
gradient is less than the critical value a the coefficient $’(Oz) of the second derivative 
in (10) is positive and (10) leads to correct initial-boundary-value problems. However, 
if somewhere the temperature gradient is larger than a, this coefficient becomes 
negative and (10) is the backward heat equation. This suggests that the mathematical 
model should be modified. 

To overcome this difficulty we have to take into account that ( 5 )  is only one equation 
of a system, governing the whole field, which should also contain the equations for a 
model of turbulent shear flow. At this moment a generally accepted system of 
equations to describe turbulent shear flow is not available, but all such models should 
contain the equation of turbulent energy balance which can be written in the form (see 
e.g. Monin & Yaglom 1971) 

Q, - ((p’/p + b)  w ’ ) ~  - 6 + pg-. 
P C P  

6, = 

Here u(z, t),  u(z, t )  and w(z, t )  denote the components of the velocity along, respectively, 
the horizontal x-axis, the horizontal y-axis, and the vertical z-axis (we recall that the 
mean velocity is directed, by definition, along the x-axis), p is the pressure, /3 the 
volume thermal extension coefficient of the fluid, g is the gravitational acceleration, 
primes denote fluctuations, bars indicate ensemble means values, b is the specific 
turbulent energy per unit mass : 

(12) b = f(d2 + a” + d2), 

e the viscous dissipation rate of turbulent energy per unit mass, and @(z, t )  is the heat 
flux which in the heat balance equation ( 5 )  was replaced by -pep ke, according to (6). 
The first term on the right-hand side of (11) represents the inflow rate of turbulent 
energy due to the work of the Reynolds stresses on the mean velocity gradient, the 
second term is the divergence of the mean turbulent flux of turbulent energy, the third 
term (- e) represents the viscous dissipation rate of turbulent energy, and the last term 
is the decay rate of turbulent energy due to the work against the buoyancy force. In 
view of the positivity of the temperature gradient O,, the last term in (1 1) is negative; 
it represents the basic sink of turbulent energy in a strongly stratified flow and also the 
inhibition of turbulence by flow stratification. 

Now to the point most essential for the present work. The turbulent temperature 
diffusivity k is governed by instantaneous turbulence properties at the moment t. 
Generally speaking it cannot be replaced by the function k,(z, t),  i.e. by the limiting 
value of the turbulent temperature diffusivity, corresponding to the instantaneous 
value of the temperature gradient. Indeed according to every model of turbulence 
which contains the turbulence energy balance equation (1 1) turbulence energy needs 
some time 7 to assimilate the current value of the temperature gradient. Therefore, and 
due to monotone dependence of k ,  on the temperature gradient at the moment t, 
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turbulence temperature diffusivity can be taken as corresponding to the equilibrium 
value k, related to the temperature gradient at a certain delayed moment t -7 ,  where 
7 is the time of delay governed by the turbulence itself: 

7 - l/u*. (13) 
Here I is the mean lengthscale of the vortex system, which is proportional to the 
integral lengthscale of the velocity field and u* = (g/p) i  is the flow friction velocity, the 
characteristic velocity scale determined by the tangential stress CT and fluid density p, 
which is proportional to mean velocity fluctuation. We assume that the delay time 7 is 
constant, small in comparison with the characteristic timescale of temperature 
stabilization, so we deal with an average over the whole field quantity. Our model can 
incorporate the temperature-gradient dependence of 7 without any complications. We 
do not do it here for the following two reasons. Firstly, we have at this time no reliable 
information concerning temperature-gradient dependence of 7. Secondly, this 
dependence (it is plausible that 7 should decrease with growing temperature gradient) 
will not lead to qualitative differences, only some quantitative ones. 

Thus, our basic hypothesis is that the current turbulent temperature diffusivity 
corresponds to the equilibrium one for the temperature gradient at the moment t - 7:  

(14) 
Bearing in mind that the delay time 7 is small in comparison with the characteristic 
timescale of the temperature field we obtain, developing (14) in a linear expansion with 
respect to 7, 

and 

q z ,  t )  = k,(e,(z, t - .I). 

O,(z, t - 7) M O,(z, t )  - 70tt(z, t )  

k z k,(o, - 74,) z k,(e,) - 7k;(e2) oZt. 

8, = #(8z)z + 7@(8,),t, 

(1 5)  

(16) 

Combining (5 )  and (15), we obtain the following equation for the temperature: 

where the functions # and @ are defined by 

$(P) = - 1 ski@) ds = - #(p)  + k,(s) ds for p 2 0. sp 
Since k, is strictly decreasing, $ is strictly increasing for t > 0. In addition we shall 
assume that 

- lm sk&) ds < + 00, 

i.e. 'that k, tends to zero sufficiently fast as p --f + 00, which implies that 

$(+0O)=y< +a. 
The graph of @ is represented in figure 1 (b). 

of the basic equation : 
Differentiating (16) with respect to z and denoting 8, by v ,  we obtain another form 

ut = $(u>,, + 7 $ ( ~ > ~ ~ t .  (19) 
It is a natural question to ask why the third-order terms in (1) and (19) may be 

omitted if 8, < a everywhere in the field, and at the same time they should be 
12-2 
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necessarily retained if somewhere q5z is larger than a. A simple answer to this question 
is supplied if we consider equation (1) with ‘frozen’ coefficients 

8, = AB,, + BB,,,. (20) 

Expanding the initial conditions in a Fourier series, we may, as usual, consider 
solutions of the type 

From (20) and (21) we obtain 
(21) 

(22) 

(23) 

8 = cei(kz-wt) 

- iw = - Ak2/( 1 + Bk’), 

8 = c exp [ikz - Ak2t / (  1 + Bk’)]. and therefore 

If B = 0 (i.e. we neglect third-order terms), then for A > 0 (subcritical values of the 
temperature gradient) all perturbations decay, and for A < 0 they grow exponentially 
and the growth rate of high-spatial-frequency solutions (large k) increases with 
frequency. 

If B > 0 (the case considered in this paper), all frequencies for A < 0 grow uniformly, 
and incorrectness is prevented. For A > 0 the third-order term does not play a 
significant role because perturbations decay exponentially for all k. 

We observe that it is not surprising that steps of the temperature arise in numerical 
computations if we omit the third-order term (Posmentier 1977; Djumagazieva 1983). 
Numerically difference (rather than differential) equations are always solved, and 
expanding first- and second-order differences into series we obtain ‘numerical ’ higher- 
order terms which influence the computations and which play a stabilizing role. These 
terms, however, are uncontrolled and have no direct physical sense. Therefore, 
analytically we cannot omit the third-order term: it is of crucial importance if 
somewhere in the region the temperature gradient is supercritical. 

Equation (20) can also be represented in the form 

B,+Q, = 0, Q = -AB,-B(B,),. 

Therefore in the case A < 0, the impression can arise that for the steady state the 
‘temperature flux’ Q = -Ad,  corresponds to the heat flow along the temperature 
gradient, which contradicts the second law of thermodynamics. In fact, for every 
unsteady temperature distribution the second term of the temperature flux B(B,), 
overweighs the first terms and preserves the right direction of the heat flow. 

3. Mathematical analysis 
First we specify and discuss several hypotheses on the functions entering the 

equation and initial condition which we shall use for the mathematical analysis of the 
basic problem (4): 

HI. the function 7,b is a smooth function defined on the interval 0 < p < + co, 
+(O) = O,$‘(p) > 0 forp  2 0, and $(+a) = y, where 0 < y < +coo; 

H2. the function # is a smooth function defined on the same interval, #(O) = 0, 
#(+ co) = 0,O < #(p )  < #(a) for 0 < p  < + co for some a > 0, and there exists 
constants, k, and k, such that 
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H3. the function 8,(z) (giving the initial temperature distribution) is a smooth and 

Hypothesis H1 implies that 
non-decreasing function defined on the interval 0 < z d L, and Oh(0) = 8h(L) = 0. 

V(0) > 0; (25) 
on the other hand it follows from (18) that V(p) = -pkh(p), whence f(0) = 0 if kh(p) 
remains bounded as p +. 0. Condition (25) is mathematically convenient since it avoids 
additional technical difficulties at points where the temperature gradient vanishes ; we 
remind the reader that the interesting physical phenomena occur for temperature 
gradients which are larger than the threshold value a, and in this paper we focus our 
attention on the mathematical description of what happens for large gradients. In 
addition we observe that, for small values of the temperature gradient, it is impossible 
to determine the steady diffusivity ko(8,) accurately from experimental data, since the 
quantity measured is the flux, which should be divided by the temperature gradient to 
obtain the diffusivity. Therefore we can impose at small values of temperature gradient 
mathematically convenient condition (25). 

A more serious mathematical restriction is condition (24), which replaces the natural 
condition (3). Actually condition (3) is sufficient to prove the existence of a solution 
(see in Barenblatt et al. 1993, the remark after the proof of the lemma 5.2) and the 
condition (24) is used to prove its uniqueness. In terms of ko condition (24) can be 
rewritten as 

and it is essentially a condition of the behaviour of ko(p) for large values of p. We 
observe that (24) is satisfied for large values of p if ko(p) is defined by 

A 
ko(P) = - B +p” 

if v > 0, 

or 

Note that we did not assume in hypothesis H2 that $(p) is increasing for 0 < p  < 
01 and decreasing forp > a; we only assumed that $ has a maximum a t p  = 01, and that 
$ d $(01) everywhere. Therefore, generally speaking, there may be several intervals in 
which the function $ decreases or increases. 

As we have announced in the Introduction, the solution to problem (4) may become 
discontinuous within finite time. Since such a solution is not a classical one, we have 
to define what we mean by a (generalized) solution of problem (4). In particular we 
have to define what we mean by @(8,) and $(8,) at points at which 8 is discontinuous. 
The main idea of the definition which we give below is to replace the function $(8,) in 
the equation by a continuous function w(z, t )  which coincides with @(8,) at the points 
where 8 is smooth, and which is equal to the value of @ at infinity, y, at the points 
where 8 is discontinuous ; more precisely, we replace 
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where 8(z+, t )  and O(z-, t )  denote respectively the left and right limit of 8. 
Throughout this paper we shall use the notation 

Q = ((z,t):O < z < L , t  > 0} and QT = ((z,t):O < z < L,O < t < T), 

where T > 0. 

Definition. A bounded function 8 defined on Q which is non-decreasing with respect 

(i) there exists a continuous function w defined on Q such that 0 6 w < y in Q, and 
to z is a solution of the problem (4) if for any T > 0: 

( O(Z + h, ti- @(z+, t )  w(z, t )  = lim$ 
h+O 

= lim$ ~ + h y t ) - 8 ( z - ’ t ) )  h for 0 < z < L and t > 0;  (26) 
h+O 

(ii) 8,, wt and wZt are squared integrable in QT, there exists a constant C such that 

1 w2(z, t )  dz < C for 0 Q t 6 T, 

8 and s satisfy the condition that the relation ($-’ is the inverse of $) 

4 = 4($-’(w>>, + 7Wzt  (27) 

holds almost everywhere in QT, i.e. except a set of zero measure, and 

B(z,O) = 8,(z) for 0 < z < L. 

It turns out that problem (4) has exactly one solution in this class of solutions. 

THEOREM 1 (Existence and uniqueness). Let hypotheses H1, H2 and H3 be satisfied. 

For the proof we refer to Barenblatt et al. (1993). 
Now we are ready to state the main results about the qualitative behaviour of the 

solutions, which are of primary importance here. The first result says that if the 
temperature gradient in a point zo at a certain time to is smaller than the threshold value 
a, then it remains smaller than a at zo for all later times t > to: 

THEOREM 2 (Gradient estimate). Let hypotheses H1, H2 and H3 be satisfied, and let 
8(z, t )  be the solution of problem (4). IfO,(z0, to) < a for some zo E (0, L) and to 2 0, then 
Bz(z0, t)  6 a for all t > to. 

It follows from this result that if the initial temperature gradient is smaller than a at 
every point, then it remains always smaller than a. There exist however initial 
temperature distributions for which the gradient becomes infinite in finite time : 

THEOREM 3 (Formation of discontinuities). Let hypotheses H1 and H2 be satisfied. 
Then there exists smooth initial functions Oo(z) which satisfy hypothesis H3, such that the 
corresponding solutions of problem (4) are not continuous in Q. 

Once a solution is discontinuous at a point zo, the solution remains discontinuous at 
that point and the temperature jump B(z;, t )  - O(z;, t)  is non-decreasing in time: 

Then problem (4) possesses a unique solution 8. 
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THEOREM 4 (Persistence of discontinuities). Let hypotheses H1, H2 and H3 be 
satisfied. Let 8 be the solution of problem (4) in the sense determined above, and let w be 
defined by (26). I f for some 0 < zo < L and to > 0 

W(Z0, to) = y, 

then w(zo, t )  = y for t > to, 

and 

(28) the function 8(zi ,  t )  is non-decreasing in (to, + a). I the function 8(z;, t )  is non-increasing in (to, + co), 

Finally we consider the asymptotic behaviour of the temperature distributions; if a 
solution becomes discontinuous, it converges to a step-wise temperature distribution as 
t+ +cQ: 

THEOREM 5 (Convergence to step-wise solutions). Let hypotheses H I ,  H2 and H3 be 
satisfied and let 8 be the solution of problem (4). Then there exists a non-decreasing 
function q defined on the interval 0 d z d L which satisfies 

q’(z) = 0 for  almost every z E (0, L) 
such that 

O(z, t )  + q(z) as t + cg for  almost every 0 < z < L. 

If 8 is not everywhere continuous in Q, then q is non-constant in the interval 0 < z < 
L. 

In the following section we shall indicate the formal proofs of some of these results. 
To keep the proofs as transparent as possible, we shall apply techniques to the 
generalized solutions which can only be justified when applied to smooth solutions. For 
the rigorous proofs and for the proof of Theorem 3, which, because of its length and 
its non-constructive nature, will be omitted in the present work, we refer to Barenblatt 
et al. (1993). 

4. Outline of the proofs 
All proofs are based on the following (trivial) version of the maximum principle: if 

the function a(z) is non-negative in an interval a < z < b and if u(z) is a smooth 
function in the interval a d z d b, which satisfies the conditions 

for a < z < b, 
Ml < u(z) -a(.) u’/(z) < M ,  
Ml d u(a) d M , , M ,  d u(b) d M ,  
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In view of the boundary condition at z = 0, this relation assumes the form 

u, = 7$(O,), + $(eA (3 1) 

and we obtain from (30) and the boundary condition at z = L that ut(z, t )  satisfies, for 
any t > 0, 

Since 0 < $(O,(z, t ) )  < $(a), we may apply, for fixed but arbitrary t > 0, the maximum 
principle and we find that 

for 0 < z < L, t > 0. 0 < ut(z, t )  < $(a) (32) 

Combining the second inequality in (33) with (31), we have that 

77,k’(O,) O,, < $(a) - $(O,) for 0 < z < L, t > 0. (34) 

If we fix a value z = z,, (34) can be considered as an ordinary differential inequality for 
the gradient 8,(zo, t ) ,  and since the right-hand side of (34) vanishes if the gradient 
attains the value a, it follows at once that 

O,(Z,, to) < a implies that Oz(zo, t)  < a for all t > to, 

and we have obtained the gradient estimate of Theorem 2. 
Next we consider the proof of Theorem 4: assuming that the gradient 

@,(z,, to) = + (3 5 )  

at some point (z,, to), we have to show that 

and 
O,(Z,, t )  = + co for all t > to (36) 

(37) 
O(z;, t )  is non-increasing with respect to t > to, 

O ( Z ~ ,  t )  is non-decreasing with respect to t > to 

We observe that, intuitively, since $’( + co) = $’( + 00) = 0 relation (36) means that, 
for t > to there is no interaction between the temperature fields in the regions where 
z < z ,  and z > z,. Below we use this decoupling (in a rigorous way), constructing the 
solution in the two regions independently. 

First we consider the problem for z > z ,  and t > to, requiring that the gradient is 
infinite at z,: 

Qt = $(Q,), + 7$(Q,),, for zo < z < L, t > to, 

1 

Q,(zo, t )  = + co for t > to, 

B,(L, t )  = 0 for t > to, 

Qe, t o )  = O(z, to) for z,  < z < L. 

It can be proved that (38) possesses a unique (generalized) solution Q(z, t ) ,  which, as 
we shall show below, satisfies the condition 

(39) 

) 

e(z;, t )  is non-decreasing with respect to t > to. 
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the temperature 0 at some point and at some time implies a discontinuity of the 
limiting temperature q at the same point. We emphasize that this discontinuity of 
the temperature is possible because the flux is equal to zero at both zero and infinite 
temperature gradient (see figure 1 a). 

5. Numerical results 
The results of several numerical calculations will be presented below to illustrate step 

formation from smooth temperature distributions. Assuming that the equilibrium 
temperature diffusivity coefficient is given by the relation (9), we can rewrite (19) for 
the temperature gradient in the form 

where the following dimensionless variables have been introduced : 

We observe that the maximum of the heat flux corresponds to the value u = 1 of the 
dimensionless temperature gradient. 

We consider the initial-boundary value problem for (41) in the region 0 < 6 < 1, 
9 3 0, under the following boundary and initial conditions: 

U ( O , 8 )  = 0, u( 1,9) = 0, (43) 
a, 0) = uo(Q, (44) 

where uo(Q is given smooth and positive function. 
The numerical solution is simplified because the problem is formulated in terms of 

the temperature gradients only. Our main purpose here is to demonstrate numerically 
the formation of steps, and to investigate how the number of steps depends on the 
dimensionless relaxation time cr. It is clear that for step formation from a smooth initial 
temperature distribution a supercritical part of the initial distribution is needed, i.e. the 
existence of a part of the interval 0 < 5 < 1 where uo(Q > 1. 

We performed our computations for the following initial condition : 

where U, is a positive constant (the initial dimensionless temperature is determined by 
its gradient, given by (43, and the condition that it vanishes at 5 = 0). 

The algorithm for finding the numerical solution of problem (41), (43), (45) is rather 
simple; we have only to note that an implicit approximation, and therefore an iteration 
procedure, is needed for the right-hand side of (41) due to its nonlinearity. We use the 
difference net in the region 0 < 6 < 1 defined by & = ih, i = 0,1,. . . , N,  whereh = l / N  
and N is the number of nodes of the difference net. In all calculations the value N = 
200 was used. The time discretization of (41) was performed in the following way: 

here A 9  = - 9, is the increment of the dimensionless time, u' = u(9,), Zi = u(9,+,), 
a= ~ti+(1-7/l)u',O < 7 6 1. 
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Indeed, defining 

and arguing as in the proof of the gradient estimate, we obtain that for any t > to 

for zo < z  < L. 
v,(zo, t )  = Ut(L, t )  = 0. 

It follows from the maximum principle that U,(z, t )  2 0, i.e. that for any zo < z < L 

~ ( z ,  t )  is non-decreasing with respect to t > to. 

Since zi(zo, t )  = 0 for all t > to, this implies that 

uz(z0, t )  is non-decreasing with respect to t > to 

and (39) follows from the relation g(z, t )  = Uz(z, t). 

f 2 to with boundary conditions &(O, t )  and B,(zo, t )  = + co, and the property 
In a completely analogous manner we construct a solution e(z, t )  for 0 < z > zo and 

- O(z;, t )  is non-increasing with respect to t > to. (40) 

In view of (39 ,  (39) and (40), a straightforward calculations shows that the function 

if 0 d z d zo, t 2 to 
8(z, t )  if zo < z < L, t 2 to 

is a (generalized) solution of the original problem (4) for t 2 t2. Since &z, to) = O(z, to) 
for all z ,  it follows from the uniqueness of solutions of (4) that O(z, t )  and O(z, t )  coincide 
for all t > to. Finally it follows from the construction of 6 and from (39) and (40) that 
the desired properties of (36) and (37) are satisfied. 

We conclude this section with a discussion of the large-time behaviour of the 
solutions. First we indicate the construction of the limiting temperature profile q(z). 

Let u(z, t )  be defined by (29). It follows from the first inequality in (33) that 

u(z, t)  is non-decreasing with respect to t .  

By (30), u,, = Oz 2 0, i.e. v(z, t )  is convex with respect to z and, being constant at the 
boundaries z = 0 and z = L, v is uniformly bounded. Hence the pointwise limit 

~ ( z )  = lim v(z, t )  for 0 < z < L 
t++m 

exists, and u is a convex function. It is well-known that convex functions are 
differentiable at all points, and we denote the derivative at the points where U is 
differentiable by q : 

q(z) = jJ’(z). 

The fact that q is a piecewise-constant function follows essentially from the fact that 
q is a steady-state solution, i.e. it satisfies the condition 

+(q’(z)) = 0 for 0 < z < L. 

Hence q’(z) vanishes at all points at which the gradient is finite, but since +( + co) = 0 
we cannot exclude discontinuities of q(z). Indeed it follows from Theorem 4 that 
if O ( Z ~ ,  to) > O(z;, to), then q(z i )  2 O(zi, to) > O(z;, to) 2 q(z;), i.e. a discontinuity of 
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FIGURE 3. Evolution of subcritical (U,  = 0.9) initial temperature distribution. No steps are formed 
for n = 1, (a), and for n = (b). 
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FIGURE 4. Evolution of supercritical (U,  = 1.7) initial temperature distribution. No steps are formed 
at large (cr = 1) relaxation time, (a), one step is formed at medium (a = relaxation time, (b). 

For the approximation of the second space derivative on the difference net we used 
the formula 

with second-order accuracy. Due to the implicit time approximation we could perform 
the computation with A 8  = O(h). Because of the nonlinearity of the resulting system 
of algebraic equations, an iteration procedure was necessary to compute the 
distribution of ti over the next time layer. Ten iterations were usually required on each 
time layer to obtain convergence with accuracy lop3, except for time intervals where the 
fast evolution of the solution took place; in the latter case several tens of iterations 
were necessary. The best convergence results were obtained for the completely implicit 
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FIGURE 5. Evolution of strongly supercritical (U,  = 4) initial temperature distribution. (a) CT = 1 : 
no steps are formed at large relaxation time. (b) = 10-l: tendency to the formation of one step is 
observed. (c) G = 5 x one step is formed at medium relaxation time. (9 c = 2.5 x lo-*: two steps 
are formed at medium relaxation time. 

scheme, i.e. 7 = 1 (the first iteration on each time layer was always performed with 

After obtaining the gradient on the new time layer, the temperature was calculated 
by simple integration, and the integration constant was determined from the condition 

q = 0). 

In figures 3-6 the results of some calculations are represented for three different 
values of the constant U,, (corresponding to an initial temperature with, respectively, 
subcritical, supercritical and strongly supercritical gradient) and for decreasing values 
of the dimensionless relaxation time CT. 

We may conclude that the numerical calculations confirm the analytic results 
presented above, and they indicate that if the gradient is supercritical, more and more 
steps are formed with decreasing c. 
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FIGURE 6. Evolution of strongly supercritical (U,, = 4) initial temperature distribution. Multiple steps 
are formed at small (a = relaxation time at the dimensionless time moment 8 = 0.025, (a) 8 = 
0.05, (b), and 8 = 0.075, (c ) .  
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